11 research outputs found

    Design of multi-homing architecture for mobile hosts

    Get PDF
    This thesis proposes a new multi-homing mobile architecture for future heterogeneous network environment. First, a new multi-homed mobile architecture called Multi Network Switching enabled Mobile IPv6 (MNS-MIP6) is proposed which enables a Mobile Node (MN) having multiple communication paths between itself and its Correspondent Node (CN) to take full advantage of being multi-homed. Multiple communication paths exist because MN, CN, or both are simultaneously attached to multiple access networks. A new sub layer is introduced within IP layer of the host’s protocol stack. A context is established between the MN and the CN. Through this context, additional IP addresses are exchanged between the two. Our MNS-MIP6 architecture allows one communication to smoothly switch from one interface/communication path to another. This switch remains transparent to other layers above IP. Second, to make communication more reliable in multi-homed mobile environments, a new failure detection and recovery mechanism called Mobile Reach ability Protocol (M-REAP) is designed within the proposed MNS-MIP6 architecture. The analysis shows that our new mechanism makes communication more reliable than the existing failure detection and recovery procedures in multi-homed mobile environments. Third, a new network selection mechanism is introduced in the proposed architecture which enables a multi-homed MN to choose the network best suited for particular application traffic. A Policy Engine is defined which takes parameters from iv the available networks, compares them according to application profiles and user preferences, and chooses the best network. The results show that in multi-homed mobile environment, load can be shared among different networks/interfaces through our proposed load sharing mechanism. Fourth, a seamless handover procedure is introduced in the system which enables multi-homed MN to seamlessly roam in a heterogeneous network environment. Layer 2 triggers are defined which assist in handover process. When Signal to Noise Ratio (SNR) on a currently used active interface becomes low, a switch is made to a different active interface. We show through mathematical and simulation analysis that our proposed scheme outperforms the existing popular handover management enhancement scheme in MIPv6 networks namely Fast Handover for MIPv6 (FMIPv6). Finally, a mechanism is introduced to allow legacy hosts to communicate with MNS-MIP6 MNs and gain the benefits of reliability, load sharing and seamless handover. The mechanism involves introducing middle boxes in CN’s network. These boxes are called Proxy-MNS boxes. Context is established between the middle boxes and a multi-homed MN.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On the use of SHIM6 for Mobility Support in IMS Networks

    Get PDF
    The future of network communications is moving towards deployment of an all-IP core network. This has given rise to many devices hitting the market equipped with multiple network interfaces. However, in order to really benefit from such a heterogeneous network environment, applications must experience minimum disruption as they roam from one network to another, which requires seamless mobility support. Although, some mobility proposals have emerged (Mobile IPv6, and its extensions), none of them give satisfactory performance in terms of handover between different networks. In addition, they require infrastructural changes to the network and give poor performance in case of a failure. In this paper, we propose a mechanism to support mobility through a multi homing SHIM6 layer. The results show that our proposed mechanism outperforms Route Optimized Mobile IPv6

    Data Protection and Privacy of the Internet of Healthcare Things (IoHTs)

    No full text
    The Internet of Things (IoT) is an emerging field consisting of Internet-based globally connected network architecture. A subset of IoT is the Internet of Healthcare Things (IoHT) that consists of smart healthcare devices having significant importance in monitoring, processing, storing, and transmitting sensitive information. It is experiencing novel challenges regarding data privacy protection. This article discusses different components of IoHT and categorizes various healthcare devices based on their functionality and deployment. This article highlights the possible points and reasons for data leakage, such as conflicts in laws, the use of sub-standard devices, lack of awareness, and the non-availability of dedicated local law enforcement agencies. This article draws attention to the escalating demand for a suitable regulatory framework and analyzes compliance problems of IoHT devices concerning healthcare data privacy and protection regulations. Furthermore, the article provides some recommendations to improve the security and privacy of IoHT implementation
    corecore